RELATIONAL DATABASE DESIGN VIA ER MODELLING

CHAPTER 9 (6/E)

CHAPTER 7 (5/E)

CHAPTER 9 OUTLINE

- Relational Database Design Using ER-to-Relational Mapping
 - Algorithm to convert the basic ER model constructs into relations
- Mapping EER Model Constructs to Relations
 - Additional steps for EER model

RECALL (BASIC) ER DIAGRAM

Figure 9.1
The ER conceptual schema diagram for the COMPANY database.

END GOAL: RELATIONAL MODEL

STEP 1: MAP REGULAR ENTITY TYPES

- For each regular entity type, create a relation schema R that includes all the single-valued attributes of E
 - "Flatten" composite attributes
 - Example renames some attributes (e.g., Dname), but not needed
 - Pick one of the keys as "primary key" and declare the rest to be unique
 - Called entity relations
 - Each tuple represents an entity instance

(a) EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary
-------	-------	-------	------------	-------	---------	-----	--------

DEPARTMENT

PROJECT

Pname Pnumber	Plocation
---------------	-----------

STEP 2: MAP WEAK ENTITY TYPES

- For each weak entity type, create a relation schema R and include all single-valued attributes of the entity type as attributes of R
 - Include primary key attribute of "owner" as foreign key attribute of R
 - Primary key of R is primary key of owner together with discriminant attribute from R

(b) DEPENDENT

|--|

STEP 3: MAP BINARY 1:1 RELATIONSHIP TYPES

- For each binary 1:1 relationship type R, identify relation schemas that correspond to entity types participating in R
 - Apply one of three possible approaches:
 - Foreign key approach
 - Add primary key of one participating relation as foreign key attribute of the other, which will also represent R
 - If only one side is total, choose it to represent R (why?)
 - Declare foreign key attribute as unique
 - Merged relationship approach
 - Combine the two relation schemas into one, which will also represent R
 - Make one of the primary keys "unique" instead
 - Cross-reference or relationship relation approach
 - Create new relation schema for R with two foreign key attributes being copies of both primary keys
 - Declare one of the attributes as primary key and the other one as unique
 - Add single-valued attributes of relationship type as attributes of R

STEP 4: MAP BINARY 1: N RELATIONSHIP TYPES

Foreign key approach

- Identify relation schema S that represents participating entity type at N-side of 1:N relationship type
- Include primary key of other entity type (1-side) as foreign key in S

Relationship relation approach

- Create new relation schema for S with two foreign key attributes being copies of both primary keys
- Declare the pair of attributes as primary key
- Include single-valued attributes of relationship type as attributes of S

STEP 5: MAP BINARY M: N AND HIGHER ORDER RELATIONSHIP TYPES

- For each binary M:N relationship type or ternary or higher order relationship type, create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Make all these attributes primary key of S
 - Include any simple attributes of relationship type in S

STEP 6: MAP MULTIVALUED ATTRIBUTES

- For each multivalued attribute
 - Create new relation R with attribute to hold multivalued attribute values
 - If multivalued attribute is composite, include its simple components
 - Add attribute(s) for primary key of relation schema for entity or relationship type to be foreign key for R
 - Primary key of R is the combination of all its attributes

(d) DEPT_LOCATIONS

Dnumber	Dlocation
---------	-----------

OPTIONS FOR MAPPING SPECIALIZATION OR GENERALIZATION

- For any specialization (total or partial, disjoint or overlapping)
 - Separate relation per superclass and subclasses
 - Single relation with at least one attribute per subclass
 - Introduce a Boolean attribute if none specific for subclass

SPECIALIZATION OPTIONS (CONT'D)

- For total specializations (and generalizations) only
 - Separate relation per subclass relations only
 - Overlapping subclasses will result in multiple tuples per entity
- For disjoint specializations only
 - Single relation with one type attribute
 - Type or discriminating attribute indicates subclass of tuple
 - Might require many NULL values if several specific attributes exist in subclasses

MAPPING UNION TYPES

- Create relation schema to represent union type (generalization)
- Specify a new key attribute
 - Surrogate key
- Example: Owner and Registered Vehicle

SUMMARY

Algorithm for ER-to-relational mapping

Table 9.1	Correspondence	between	ER and	Relational	Models
-----------	----------------	---------	--------	------------	--------

ER MODEL	RELATIONAL MODEL
Entity type	Entity relation
1:1 or 1:N relationship type	Foreign key (or relationship relation)
M:N relationship type	Relationship relation and two foreign keys
<i>n</i> -ary relationship type	Relationship relation and n foreign keys
Simple attribute	Attribute
Composite attribute	Set of simple component attributes
Multivalued attribute	Relation and foreign key
Value set	Domain
Key attribute	Primary (or secondary) key

Extensions for mapping constructs from EER model into relational model

EXERCISE

Translate the following ER Diagram into a relational database schema.

EXERCISE

What ER Diagram might produce the following relational database schema?

Figure 6.14
A relational database schema for a LIBRARY database.